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Abstract By the use of complete orthonormal sets of y“-
ETOs (a=1, 0, -1, =2, ...) introduced by the author, new
addition theorems are derived for STOs and arbitrary
central and noncentral interaction potentials (CIPs and
NCIPs). The expansion coefficients in these addition
theorems are expressed through the Gaunt and Gegen-
bauer coefficients. Using the addition theorems obtained
for STOs and potentials, general formulae in terms of
three-center overlap integrals are established for the
multicenter r-electron integrals of CIPs and NCIPs that
arise in the solution of the N-electron atomic and
molecular problem (2<t<N) when a Hylleraas approxi-
mation in Hartree—Fock—Roothaan theory is employed.
With the help of expansion formulae for translation of
STOs, the three-center overlap integrals are expressed
through the two-center overlap integrals. The formulae
obtained are valid for arbitrary quantum numbers,
screening constants and location of orbitals.

Keywords Addition theorems - Two- and three-center
overlap integrals - Central and noncentral potentials -
Multicenter multielectron integrals

Introduction

It is well known that the determination of multielectron
properties for atoms and molecules requires more accu-
rate solutions of Hartree-Fock (HF) equations. [1] In
order to obtain better approximate solutions in HF theory,
Hylleraas first introduced the two standard variational
approaches in a series of papers on helium-like systems:
[2, 3] (1) the Hylleraas (Hy) method, [3, 4] in which the
interelectronic coordinates r,, are explicitly included in
the terms of the wave function; (2) the configuration
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interaction (CI) method, [2, 4] in which the wave function
is determined by linear combination of determinantal
functions arising from different configurations. [5] There
are theoretical grounds [5, 6] for thinking that both the CI
and the Hy methods are general methods capable of
yielding variational solutions that converge to the exact
solution of the Schrodinger equation with any desired
degree of accuracy if a sufficient number of terms are
included. We notice that the CI expansions converge
much more slowly than the Hy-method expansions.
Recent work on the hybrid technique Hy—CI, [7] which
avoids many of the complicated integrals, converges
rather quickly for small systems. A drawback in the Hy-
type expansions, however, is the complexity of the
calculation of multicenter multielectron integrals. The
Hy method first developed by James and Coolidge [8] has
been used for determination of the ground state energy of
the H, molecule [9, 10] and is still valid for two- and
three-electron atomic and molecular systems (see, e.g.,
[11, 12, 13] and references quoted therein).

The purpose of the present paper is to derive formulae
for the multicenter integrals of an arbitrary r-electron
operator that arise in calculations on atoms and molecules
with N electrons, where 2<t<N. These integrals are
expressed in terms of two-center overlap integrals for the
calculation of which efficient computer programs espe-
cially useful for large quantum numbers are available in
our group. Therefore, by using the computer programs for
the overlap integrals, one can calculate the multicenter
integrals of CIPs and NCIPs appearing in the determina-
tion of atomic and molecular multielectron properties
when the Hartree—Fock—Roothaan approximation is em-
ployed.

Definitions and basic formulae

The general r-electron operator of interaction potentials
with the screening parameter 1 for the N-electron atomic
and molecular systems (2<t<N) can be constructed from
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Here fs (n, ﬁw) are the screened NCIPs which have the
form: [15]

fuv.v(na 721) :fu(ny r21)<

12
> Svs(621,01) (3)

where Sy, is the complex (S,=Y,,) or real spherical
harmonic; f,(n,727)=f.00(n,72;) denotes a radial part of
potential (central potential) with positive or negative
integer values of u. We notice that the number of NCIPs
fuws (0, %) in Eq. (1) is #(e=1)/2.

The interaction potentials f;,, (n, F,N) and the operator
Ouws(N, F12..,) with respect to the permutations of sub-
scripts have the following symmetry properties:

P,uvfuvs (77; ?uv) = (—1 )VfMVs (777 7;{\)) (4)

p,uvouvs(rla 712...:‘) - (—1)V0uvs(77, ?12...1‘) (5)

where 2<v<t and 1<u<v. It should be noted that the
operators F,E'D)S and O,5(n, F12..,) for even values of v are
not changed in application of N! and ¢! permutations,
respectively.

In [14] we have established a theorem for matrix
elements of a general 7-electron operator, (Eq. 2), between
N-dimensional determinantal wave functions arising in
the solution of the atomic and molecular multielectron
problem by the Hartree—Fock method. According to this
theorem, the required matrix elements of this operator
between N-dimensional determinantal wave functions are
sums of matrix elements over f-dimensional basic deter-
minantal wave functions. Therefore, the matrix elements
between N-dimensional determinantal wave functions can
be expressed, in general, through the following 2¢-center
integrals of STOs with the -electron operator (see Eq. 11
of [14]):
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where 2<t<N, p;=nilm;, p’=n’/l"3m’;, t=uvs. Here, the
normalized STOs are determined by

XXy (83, 74) O (1, Fi23..)dvidvadvs...dv,
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Addition theorems for STOs and potentials

For the evaluation of integral (6) we require addition
theorems for STOs and potentials. For this purpose we use
the formulae for the expansion of STOs in terms of STOs
at a new origin established with the help of y*-ETOs: [16]
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Here the translation coefficients V*V are determined by
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Here Fk(n)=n!/[k!(n—k)!] and the quantities Sy, are
overlap integrals between normalized STOs:

Snlm,il/l/m/ (ga é/; I_éab) = / X:lrn (Cv 7a1)7{,,/1/m/ (é/v ?bl )dvl
(13)

The overlap integrals with the same screening constants
({=¢") can be expressed in terms of STOs: [17]
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The relation for coefficients T" . in terms of Gaunt
and Gegenbauer coefficients is glven in [17].

Using Eqgs. (10) and (14) in (9) it is easy to establish
for STOs the following addition theorems:
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Now we can move on to the derivation of addition
theorems for potentials, Eq. (3). For this purpose we
utilize the following one-center expansion of potentials
through the STOs: [15]

. 4n \'7? \/(u)!
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See [15] for the exact definition of the quantity P*.

Taking into account the addition theorem (16) for a —
2, b — a, Ry, — Fry =I5 — 7y and the symmetry prop-
erty

Xm)s (TI7 an) = (_I)Uqux (n? Faz) (20)

we obtain the following addition theorems for STOs
appearing in Eqgs. (18a) and (18b):
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Equation (21) is the desired addition theorem for
interaction potentials IP: any IP having the difference of
the radius vectors, 7, = 7, — Fyp, as its argument, is
expanded into a series over products of STOs depending
on 7, and 7, separately.

Formulae in terms of overlap integrals

The multicenter z-electron integrals (Eq. 6) can be
evaluated by a reduction to overlap integrals. For this
purpose we should utilize the addition theorems for
interaction potentials (Eq. 21). Then, we obtain:
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and the quantities S in Eq. (23) are the one-electron
integrals defined by
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The analytical relationships for one-electron integrals
(Egs. 24.1, 242, 243, .., 24.t)] in terms of two-center
overlap integrals have been established, and these are
discussed in the Appendix. We notice that the number of
summation terms over the indices Ny, in Eq. (23) is #(—1)/2.

As can be seen from Eq. (23) and the formulae of the
Appendix, the evaluation of multicenter t-electron inte-
grals of arbitrary screened NCIPs (n£0) for the N-electron
atomic and molecular system (2<t<N) is reduced to the
calculation of two-center overlap integrals over STOs. It
should be noted that the formulae obtained in this work
are also correct in the case where 1=0 (see [15]). Thus,
with the aid of the formulae obtained in this study, we can
calculate also the multicenter multielectron integrals of
nonscreened central and noncentral interaction potentials.

Appendix

As can be seen from Eq. (23), the multicenter t-electron
integrals are expressed through the following basic three-
center one-electron integrals over STOs:
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N (X NN T
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Here, Ry, (zx,7) and Sz, (6, ) are the radial parts of
normalized STOs and the spherical harmonics, respec-
tively. See [18] for the exact definition of the Gaunt
coefficients CH™! and the quantities A%m,. We notice that,
Eq. (28) can easily be derived by the use of the following
expansion relation for the product of two spherical
harmonics both with one and the same center [18]:

1
——> " d"™(im,I'm')S;,,(6,9)
M

Sim(6,9)Sy,,(0,0) =

(30)
Inserting Egs. (26) and (28) into the integral in Eq. (25)
leads to the three-center overlap integrals
SZ;‘nbL,n/l/m’,u’v’G’ (g’ C/’ Z/)

_ Van / Ko G Fa) it (€ VL (s Fo)dv (31)

Using the expansion formulae for electron charge
densities (see Eq. (19) of [15]), the three-center overlap
integrals [Eq. (31)] can be expressed through the two-
center overlap integrals:

b
SZ;m,n/l/m/#/v/o-/ (§7 Cly Z/)

N u—1 vy

. ‘N =4
- ]\}En Z Z WZm,n/l/m/,#VG(g’ gl’ 8 RC“’ 0>
u=1 v=0 o=-v
. D
'Swo’#/‘,/ol (Z, Z ,Rab) (32)
where
D — qab
7= g + C/, S/zvo,,u/v/o/ (Z,Z,;Rab) = SZVG’#/V/G/ (Z, Z/)

and W is the two-center charge density expansion
coefficient. Thus, the basic three-center one-electron
integrals (Eq. 25) are determined solely from the two-
center overlap integrals.

The results of calculation for the two-center two-
electron integrals of central interaction potential fyyo(0,
r21)=1/rp; obtained with a Pentium III 800 MHz computer
(using TURBO Pascal 7.0) are shown in Table 1. The
comparative values obtained from the expansions in terms
of different complete orthonormal sets of Yy*ETOs are
shown in this table. As can be seen from the table, the
computation time and accuracy of the computer results
for different expansion formulae obtained from Y -ETOs,
Y!-ETOs and y'-ETOs are satisfactory. Work is in
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Table 1 Comparison of methods of computing two-center two-electron integrals of central interaction potentialfyoo(0,721)=1/rp 0btained in
the molecular coordinate system in a.u. for Ny 1=15, 6p,=03,=45°, Pra=Pqp=270°

n L m &1 ny Iy my ny 15 my & ns Iy my
2 0 0 5.3 2 0 0 7.1 2 1 1 3.5 2 1 1 1.3
2 1 0 3.1 2 1 0 1.4 2 1 -1 5.1 2 1 -1 1.3
2 1 0 10.8 2 1 0 8.5 2 1 1 12.2 2 1 1 8.6
2 1 1 8.4 2 1 | 5.4 2 1 -1 10.5 2 | -1 6.5
2 1 -1 4.1 2 1 -1 4.2 2 1 -1 52 2 1 -1 5.7
1 0 0 2.8 1 0 0 4.5 2 0 0 6.6 2 0 0 4.8
2 1 0 7.2 2 1 1 5.4 2 1 0 9.6 2 1 1 7.4
2 1 1 10.7 2 1 1 2.5 2 1 0 19.3 2 1 0 7.7
2 1 1 9.1 2 1 1 6.2 2 1 1 12.7 2 1 1 9.7
2 1 -1 1.1 2 1 -1 4.2 2 1 1 52 2 1 1 7.9
2 1 -1 4.1 2 1 -1 4.2 2 1 -1 5.2 2 1 -1 5.7
Rea Rap Rpa Eq. (23), a=1 Eq. (23), a=0 Eq. (23), a=—1 CPU (ms)
0 0.5 0 5.2265660306E-1 5.2265660306E-1 5.2265660306E-1 22.5
0 8.4 0 —5.3206382155E-5 -5.3206382148E-5 -5.3206382171E-5 40.3
0 3.6 0 4.0009374438E-12 4.0009374610E-12 4.0009374522E-12 39.4
0 12.1 0 —1.2826395140E-31 —1.2826397066E-31 —1.2826396515E-31 45.4
0 1.1 0 —1.2711391438E~-1 —1.2711391440E-1 —1.2711391445E-1 43.1
0 0 8.7 9.9253681754E-2 9.9253681754E-2 9.9253681752E-2 7.9
0 0 12.8  -9.3617985464E-9 —9.3617985454E-9 —9.3617985449E-9 25.8
0 0 52 3.4083931212E-2 3.4083931200E-2 3.4083931233E-2 27.6
0 0 10.5 8.3039888591E-2 8.3039888587E-2 8.3039888579E-2 26.9
0 0 10.5 3.0014944352E-2 3.0014944344E-2 3.0014944370E-2 37.1
0 0 1.1 9.0417470379E~-1 9.0417470395E-1 9.0417470357E~-1 35.4
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