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Abstract By the use of complete orthonormal sets of ya-
ETOs (a=1, 0, �1, �2, ...) introduced by the author, new
addition theorems are derived for STOs and arbitrary
central and noncentral interaction potentials (CIPs and
NCIPs). The expansion coefficients in these addition
theorems are expressed through the Gaunt and Gegen-
bauer coefficients. Using the addition theorems obtained
for STOs and potentials, general formulae in terms of
three-center overlap integrals are established for the
multicenter t-electron integrals of CIPs and NCIPs that
arise in the solution of the N-electron atomic and
molecular problem (2�t�N) when a Hylleraas approxi-
mation in Hartree–Fock–Roothaan theory is employed.
With the help of expansion formulae for translation of
STOs, the three-center overlap integrals are expressed
through the two-center overlap integrals. The formulae
obtained are valid for arbitrary quantum numbers,
screening constants and location of orbitals.

Keywords Addition theorems · Two- and three-center
overlap integrals · Central and noncentral potentials ·
Multicenter multielectron integrals

Introduction

It is well known that the determination of multielectron
properties for atoms and molecules requires more accu-
rate solutions of Hartree–Fock (HF) equations. [1] In
order to obtain better approximate solutions in HF theory,
Hylleraas first introduced the two standard variational
approaches in a series of papers on helium-like systems:
[2, 3] (1) the Hylleraas (Hy) method, [3, 4] in which the
interelectronic coordinates rmn are explicitly included in
the terms of the wave function; (2) the configuration

interaction (CI) method, [2, 4] in which the wave function
is determined by linear combination of determinantal
functions arising from different configurations. [5] There
are theoretical grounds [5, 6] for thinking that both the CI
and the Hy methods are general methods capable of
yielding variational solutions that converge to the exact
solution of the Schr�dinger equation with any desired
degree of accuracy if a sufficient number of terms are
included. We notice that the CI expansions converge
much more slowly than the Hy-method expansions.
Recent work on the hybrid technique Hy–CI, [7] which
avoids many of the complicated integrals, converges
rather quickly for small systems. A drawback in the Hy-
type expansions, however, is the complexity of the
calculation of multicenter multielectron integrals. The
Hy method first developed by James and Coolidge [8] has
been used for determination of the ground state energy of
the H2 molecule [9, 10] and is still valid for two- and
three-electron atomic and molecular systems (see, e.g.,
[11, 12, 13] and references quoted therein).

The purpose of the present paper is to derive formulae
for the multicenter integrals of an arbitrary t-electron
operator that arise in calculations on atoms and molecules
with N electrons, where 2�t�N. These integrals are
expressed in terms of two-center overlap integrals for the
calculation of which efficient computer programs espe-
cially useful for large quantum numbers are available in
our group. Therefore, by using the computer programs for
the overlap integrals, one can calculate the multicenter
integrals of CIPs and NCIPs appearing in the determina-
tion of atomic and molecular multielectron properties
when the Hartree–Fock–Roothaan approximation is em-
ployed.

Definitions and basic formulae

The general t-electron operator of interaction potentials
with the screening parameter h for the N-electron atomic
and molecular systems (2�t�N) can be constructed from
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Ouns h;~rr12:::tð Þ ¼
funs h;~rr21ð Þfuns h;~rr31ð Þfuns h;~rr41ð Þ:::
funs h;~rrt�11ð Þfuns h;~rrt1ð Þfuns h;~rr32ð Þ � funs h;~rr42ð Þ:::
funs h;~rrt�12ð Þfuns h;~rrt2ð Þ:::
funs h;~rrt�1t�2ð Þfuns h;~rrtt�2ð Þfuns h;~rrtt�1ð Þ ð1Þ

by changing the names of the electrons: [14]

F tð Þ
uns ¼

XN

m1<m2<:::<mt

Ouns h;~rrm1m2:::mt

� �
ð2Þ

Here fuus h;~rrmn
� �

are the screened NCIPs which have the
form: [15]

funs h;~rr21ð Þ ¼ fu h; r21ð Þ 4p
2nþ 1

� �1=2

Sns q21; j21ð Þ ð3Þ

where Sns is the complex (Sns=Yns) or real spherical
harmonic; fu(h,r21)=fu00(h,r21) denotes a radial part of
potential (central potential) with positive or negative
integer values of u. We notice that the number of NCIPs
fuus h;~rrmn
� �

in Eq. (1) is t(t�1)/2.
The interaction potentials fuus h;~rrmn

� �
and the operator

Ouns h;~rr12:::tð Þ with respect to the permutations of sub-
scripts have the following symmetry properties:

P̂Pmnfuns h;~rrmn
� �

¼ �1ð Þnfuns h;~rrmn
� �

ð4Þ

P̂PmnOuns h;~rr12:::tð Þ ¼ �1ð ÞnOuns h;~rr12:::tð Þ ð5Þ
where 2�n�t and 1�m�n. It should be noted that the
operators FðtÞuus and Ouusðh;~rr12:::tÞ for even values of n are
not changed in application of N! and t! permutations,
respectively.

In [14] we have established a theorem for matrix
elements of a general t-electron operator, (Eq. 2), between
N-dimensional determinantal wave functions arising in
the solution of the atomic and molecular multielectron
problem by the Hartree–Fock method. According to this
theorem, the required matrix elements of this operator
between N-dimensional determinantal wave functions are
sums of matrix elements over t-dimensional basic deter-
minantal wave functions. Therefore, the matrix elements
between N-dimensional determinantal wave functions can
be expressed, in general, through the following 2t-center
integrals of STOs with the t-electron operator (see Eq. 11
of [14]):

Iac;bd;gh;:::;ef
p1p01;p2p02;p3p03;:::;ptp

0
t ;t
ðz1z01; z2z02; z3z03; :::; ztz0t; hÞ

¼
Z

c�p1
ðz1;~rra1Þcp01

ðz01;~rrc1Þcp2
ðz2;~rrb2Þcp02

�ðz02;~rrd2Þcp3
ðz3;~rrg3Þcp03

ðz03;~rrh3Þ:::cptðzt;~rretÞ

�cp0t
ðz0t;~rrftÞOtðh;~rr123:::tÞdv1dv2dv3:::dvt ð6Þ

where 2�t�N, pi�nilimi, p’i�n’il’im’i, t�uns. Here, the
normalized STOs are determined by

cnlm z;~rrð Þ ¼ Rnðz; rÞSlmðq;jÞ ð7Þ

Rn z; rð Þ ¼ 2zð Þnþ
1
2 2nð Þ !½ ��

1
2rn�1e�z r ð8Þ

Addition theorems for STOs and potentials

For the evaluation of integral (6) we require addition
theorems for STOs and potentials. For this purpose we use
the formulae for the expansion of STOs in terms of STOs
at a new origin established with the help of ya-ETOs: [16]

cnlm z;~rra1ð Þ

¼ lim
N!1

XN

n0¼1

Xn0�1

l0¼0

Xl0

m0¼�l0
VaN�

nlm;n0l0m0 z; z;~RRab

� �
cn0l0m0 z;~rrb1ð Þ

ð9Þ
Here the translation coefficients VaN are determined by

VaN
nlm;n0l0m0 z; z;~RRab

� �

¼
XN

n00¼l0þ1

Wal0
n0n00 Nð Þ Snlm;n00�a l0m0 z; z;~RRab

� �
ð10Þ

where a=1, 0, �1, �2, ... and

Wal
nk Nð Þ ¼ 2 k � að Þ½ �!

2kð Þ!

� �1
2 XN

n0¼max n;kð Þ
2n0ð Þawal

n0nw
al
n0k ð11Þ

wal
nn0 ¼ �1ð Þn

0�l�1

�
n0þlþ1ð Þ!

2nð Þa n0þlþ1�að Þ! Fn0þlþ1�a nþ lþ 1� að Þ
�Fn0�l�1 n� l� 1ð ÞFn0�l�1 2n0ð Þ

" #1=2

ð12Þ
Here Fk(n)=n!/[k!(n�k)!] and the quantities Snlm,n’l’m’ are
overlap integrals between normalized STOs:

Snlm;n0l0m0 z; z;~RRab

� �
¼
Z

c�nlm z;~rra1ð Þcn0l0m0 z;~rrb1ð Þdv1

ð13Þ
The overlap integrals with the same screening constants
(z=z’) can be expressed in terms of STOs: [17]

Snlm;n0l0m0 z; z;~RRab

� �

¼
ffiffiffiffiffi
4p
p

z3=2

Xnþn0þ1

m�1

Xm�1

n¼0

Xn

s¼�n
gamns

nlm;n0l0m0c �mns ðz; �RRabÞ ð14Þ

where

gamns
nlm;n0l0m0 ¼

1ffiffiffiffiffi
4p
p

Xnþn0þ1

m0¼1

Wan
mm0 ðnþ n0 þ 1ÞTm0�ans

nlm;n0l0m0 ð15Þ

The relation for coefficients Tm0�ans
nlm;n0l0m0 in terms of Gaunt

and Gegenbauer coefficients is given in [17].
Using Eqs. (10) and (14) in (9) it is easy to establish

for STOs the following addition theorems:

191



cnlm z;~rra1ð Þ ¼
ffiffiffiffiffi
4p
p

z3=2
lim

N!1

XN

n0¼1

Xn0�1

l0¼0

Xl0

m0¼�l0

XNþn�aþ1

m¼1

Xm�1

n¼0

Xn

s¼�n

ZaN;mns
nlm;n0l0m0cn0l0m0 z;~rrb1ð Þc�mns z;~RRab

� �
ð16Þ

where

a ¼ 1; 0;�1;�2; :::; ~RRab ¼~rra1 �~rrb1;

gamns
nlm;n0l0m0 � 0 for mgt; nþ n0 þ 1

and

ZaN;mns
nlm;n0l0m0 ¼

XN

n00¼l0þ1

Wal0
n0n00 ðNÞg

amns
nlm;n00�al0m0 ð17Þ

Now we can move on to the derivation of addition
theorems for potentials, Eq. (3). For this purpose we
utilize the following one-center expansion of potentials
through the STOs: [15]

fuus h;~rr21ð Þ¼ 4p
2uþ 1

� �1=2 ffiffiffiffiffiffiffiffiffiffi
ð2uÞ!

p

ð2hÞuþ1=2
cuvsðh;~rr21Þ for u � 0

ð18aÞ

fuus h;~rr21ð Þ ¼ 4p
2uþ 1

� �1=2

lim
N!1

�
XN

u0¼vþ1

baN
uv;u0vðh; h

0Þcu0vsðh0;~rr21Þ for u < 0 ð18bÞ

where

baN
uu;u0uðh; h

0Þ ¼
XN

u00¼uþ1

Wau
u0u00 ðNÞP

a
uu00 ðh; h

0Þ ð19Þ

See [15] for the exact definition of the quantity Pa.
Taking into account the addition theorem (16) for a!

2; b! a; ~RRab !~rr2a ¼~rr21 �~rra1 and the symmetry prop-
erty

cuusðh;~rr2aÞ ¼ ð�1Þucuusðh;~rra2Þ ð20Þ
we obtain the following addition theorems for STOs
appearing in Eqs. (18a) and (18b):

cuns h;~rr21ð Þ ¼
ffiffiffiffiffi
4p
p

h3=2
lim

N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n

XNþu�aþ1

m0¼1

Xm0�1

n0¼0

Xn0

s0¼�n0

�YaN;m0n0s0
uns;mns cmns h;~rra1ð Þc�m0n0s0 h;~rra2ð Þ ð21Þ

where a=1, 0, �1, �2, ... and

YaN;m0n0s0
uus;mns ¼ ð�1Þn

0
ZaN;m0n0s0

uus;mns ð22Þ
Equation (21) is the desired addition theorem for

interaction potentials IP: any IP having the difference of
the radius vectors, ~rr21 ¼~rra1 �~rra2, as its argument, is
expanded into a series over products of STOs depending
on~rra1 and~rra2, separately.

Formulae in terms of overlap integrals

The multicenter t-electron integrals (Eq. 6) can be
evaluated by a reduction to overlap integrals. For this
purpose we should utilize the addition theorems for
interaction potentials (Eq. 21). Then, we obtain:

Iac;bd;gh:::;ef
p1p01;p2p02;p3p03;:::;ptp

0
t ;t
ðz1z01; z2z02; z3z03; :::; ztz0t; hÞ

¼ 1

ðh ffiffiffihp Þtðt�1Þ lim
N!1

XN

qq0
ðYaN21q021

tq21 Y
aN31q031
tq31 :::

Y
aNt�11q0t�11
tqt�11 Y

aNt1q0t1
tqt1 ÞðY

aN32q032
tq32 Y

aN42q042
tq42 :::

Y
aNt2q0t2
tqt2 Þ � ðY

aN43q043
tq43 :::Y

aNt3q0t3
tqt3 Þ:::

ðYaNtt�1q0tt�1
tqtt�1 ÞSaaa:::aac

p1q21q31:::qt�11qt1p01
ðz1hh:::hhz01Þ

�Saaa:::abd
q021q32q42:::qt2p2p02

ðhhh:::hz2z02Þ

� Saaa:::agh
q031q032q43:::qt3p3p03

ðhhh:::hz3z03Þ:::

�Saaa:::aef
q0
t1q0

t2q0
t3:::q

0
tt�1ptp

0
t
ðhhh:::hztz0tÞ ð23Þ

where a= 1, 0, �1, �2, ..., N�[(N21N31N...Nt1), (N32N42...
Nt2),...,(Nt–1t–2Ntt–2), Ntt–1)], q�[(q21q31...qt1), (q32q42...qt2),
..., (qt–1t–2qtt–2), (qtt–1)], q’�[(q’21q’31...q’t1), (q’32q’42...
q’t2), ..., (q’t–1t–2q’tt–2), (q’tt–1)], qik�mikniksikq’ik�m’ikn’ik
s’ik, 1�mik�Nik, 0�nik�mik–1, –nik�sik�nik, 1�m’ik�Nik+
u–a+1,

0 � n0ik � m0ik � 1; �n0ik � s0ik � n0ik; g
aq0

ik
tqik
� 0

for

m0ikgt; uþ mik þ 1

and the quantities S in Eq. (23) are the one-electron
integrals defined by

Saaa:::aac
p1q21q31:::qt�11qt1p01

ðz1hh:::hhz01Þ

¼ ð
ffiffiffiffiffi
4p
p
Þt�1
Z c�p1

ðz1;~rra1Þcq21
ðh;~rra1Þcq31

ðh;~rra1Þ:::
�cqt�11

ðh;~rra1Þcqt1
ðh;~rra1Þcp01

ðz01;~rrc1Þdv1

ð24:1Þ
Saaa:::abd

q021q32q42:::qt2p2p02
ðhhh:::hz2z02Þ

¼ ð
ffiffiffiffiffi
4p
p
Þt�1
Z c�

q021
ðh;~rra2Þcq32

ðh;~rra2Þcq42
ðh;~rra2Þ:::

�cqt2
ðh;~rra2Þcp2

ðz2;~rrb2Þcp02
ðz02;~rrd2Þdv2

ð24:2Þ
Saaa:::agh

q031q032q43:::qt3p3p03
ðhhh:::hz3z03Þ

¼ ð
ffiffiffiffiffi
4p
p
Þt�1
Z c�

q031
ðh;~rra3Þc�q032

ðh;~rra3Þcq43
ðh;~rra3Þ:::

�cqt3
ðh;~rra3Þcp3

ðz3;~rrg3Þcp03
ðz03;~rrh3Þdv3

ð24:3Þ
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Saaa:::aef
q0

t1q0
t2q0

t3:::q
0
tt�1ptp

0
t
ðhhh:::hztz0tÞ

¼ ð
ffiffiffiffiffi
4p
p
Þt�1

Z c�
q0

t1
ðh;~rratÞc�q0

t2
ðh;~rratÞc�q0

t3
ðh;~rratÞ:::

�c�
q0

tt�1
ðh;~rratÞcptðzt;~rretÞcp0t

ðz0t;~rrftÞdvt

ð24:tÞ
The analytical relationships for one-electron integrals
(Eqs. 24.1, 24.2, 24.3, ..., 24.t)] in terms of two-center
overlap integrals have been established, and these are
discussed in the Appendix. We notice that the number of
summation terms over the indices Nik in Eq. (23) is t(t–1)/2.

As can be seen from Eq. (23) and the formulae of the
Appendix, the evaluation of multicenter t-electron inte-
grals of arbitrary screened NCIPs (h6¼0) for the N-electron
atomic and molecular system (2�t�N) is reduced to the
calculation of two-center overlap integrals over STOs. It
should be noted that the formulae obtained in this work
are also correct in the case where h=0 (see [15]). Thus,
with the aid of the formulae obtained in this study, we can
calculate also the multicenter multielectron integrals of
nonscreened central and noncentral interaction potentials.

Appendix

As can be seen from Eq. (23), the multicenter t-electron
integrals are expressed through the following basic three-
center one-electron integrals over STOs:

Saaa:::acb
p1p2p3:::pt�1ptptþ1

ðz1z2z3:::zt�1ztztþ1Þ

¼ ð
ffiffiffiffiffi
4p
p
Þt�1
Z c�p1

ðz1;~rraÞcp2
ðz2;~rraÞcp3

ðz3;~rraÞ:::
�cpt�1

ðzt�1;~rraÞcptðzt;~rrcÞcptþ1
ðztþ1;~rrbÞdv

¼ ð
ffiffiffiffiffi
4p
p
Þt�1

�
Z

Rn1n2n3:::nt�1ðz1z2z3:::zt�1; raÞTl1m1;l2m2;l3m3;:::;lt�1mt�1
ðqajaÞcptðzt;~rrcÞcptþ1

ðztþ1;~rrbÞdv

ð25Þ
where

Rn1n2n3:::nk
ðz1z2z3:::zk; rÞ

¼ Rn1ðz1; rÞRn2ðz2; rÞRn3ðz3; rÞ:::Rnk
ðzk; rÞ

¼ ð2NkÞ!
ð2n1Þ!ð2n2Þ!ð2n3Þ!:::ð2nkÞ!

� �1=2

�ð
ffiffiffiffiffiffiffi
2zk

p
Þ3ðk�1Þx

n1þ1=2
1 x

n2þ1=2
2 x

n3þ1=2
3 :::x

nkþ1=2
k RNk

ðzk; rÞ
ð26Þ

Nk ¼ n1 þ n2 þ n3 þ :::þ nk � k þ 1;

zk ¼ x1 þ x2 þ x3 þ :::þ xk; xi ¼ xi=zk; i ¼ 1; 2; 3; :::; k

ð27Þ
and

Ql1m1;l2m2;l3m3;:::;lkmk
ðq;jÞ

¼ S�l1m1
ðq; jÞSl2m2

ðq;jÞSl3m3
ðq; jÞ:::Slkmk

ðq; jÞ

¼ 1

ð
ffiffiffiffiffi
4p
p
Þk�1 �

X

L2M2;L3M3;:::;LkMk

dL2M2ðl1m1; l2m2ÞdL3M3ðL2M2; l3m3Þ:::
dLkMkðLk�1Mk�1; lkmkÞS�LkMk

ðq; jÞ ð28Þ

dLMðlm; l0m0Þ ¼ ð2Lþ 1Þ1=2CL Mj jðlm; l0m0ÞAM
mm0 ð29Þ

Here, RNk
ðzk; rÞ and SLkMk

ðq; jÞ are the radial parts of
normalized STOs and the spherical harmonics, respec-
tively. See [18] for the exact definition of the Gaunt
coefficients CLjMj and the quantities AM

mm0 . We notice that,
Eq. (28) can easily be derived by the use of the following
expansion relation for the product of two spherical
harmonics both with one and the same center [18]:

S�lmðq; jÞSl0m0 ðq; jÞ ¼
1ffiffiffiffiffi
4p
p

X

LM

dL Mj jðlm; l0m0ÞS�LMðq; jÞ

ð30Þ
Inserting Eqs. (26) and (28) into the integral in Eq. (25)

leads to the three-center overlap integrals

Sacb
nlm;n0l0m0;m0n0s0 ðz; z

0; z0Þ

¼
ffiffiffiffiffi
4p
p Z

c�nlmðz;~rraÞcn0l0m0 ðz
0;~rrcÞcm0n0s0 ðz

0;~rrbÞdv ð31Þ

Using the expansion formulae for electron charge
densities (see Eq. (19) of [15]), the three-center overlap
integrals [Eq. (31)] can be expressed through the two-
center overlap integrals:

Sacb
nlm;n0l0m0;m0n0s0 ðz; z

0; z0Þ

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

nlm;n0l0m0;mnsðz; z
0; z;~RRca; 0Þ

�Smns;m0n0s0 ðz; z
0;~RRabÞ ð32Þ

where

z ¼ zþ z0; Smns;m0n0s0 ðz; z
0;~RRabÞ � Sab

mns;m0n0s0 ðz; z
0Þ

and WaN is the two-center charge density expansion
coefficient. Thus, the basic three-center one-electron
integrals (Eq. 25) are determined solely from the two-
center overlap integrals.

The results of calculation for the two-center two-
electron integrals of central interaction potential f000(0,
r21)=1/r21 obtained with a Pentium III 800 MHz computer
(using TURBO Pascal 7.0) are shown in Table 1. The
comparative values obtained from the expansions in terms
of different complete orthonormal sets of ya-ETOs are
shown in this table. As can be seen from the table, the
computation time and accuracy of the computer results
for different expansion formulae obtained from y0-ETOs,
y1-ETOs and y–1-ETOs are satisfactory. Work is in
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progress for the computation of multicenter multielectron
integrals of central and noncentral interaction potentials
over STOs based on the formulae given in this work.
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2 1 0 3.1 2 1 0 1.4 2 1 �1 5.1 2 1 �1 1.3
2 1 0 10.8 2 1 0 8.5 2 1 1 12.2 2 1 1 8.6
2 1 1 8.4 2 1 1 5.4 2 1 �1 10.5 2 1 �1 6.5
2 1 �1 4.1 2 1 �1 4.2 2 1 �1 5.2 2 1 �1 5.7
1 0 0 2.8 1 0 0 4.5 2 0 0 6.6 2 0 0 4.8
2 1 0 7.2 2 1 1 5.4 2 1 0 9.6 2 1 1 7.4
2 1 1 10.7 2 1 1 2.5 2 1 0 19.3 2 1 0 7.7
2 1 1 9.1 2 1 1 6.2 2 1 1 12.7 2 1 1 9.7
2 1 �1 1.1 2 1 �1 4.2 2 1 1 5.2 2 1 1 7.9
2 1 �1 4.1 2 1 �1 4.2 2 1 �1 5.2 2 1 �1 5.7
Rca Rdb Rba Eq. (23), a=1 Eq. (23), a=0 Eq. (23), a=�1 CPU (ms)
0 0.5 0 5.2265660306E�1 5.2265660306E�1 5.2265660306E�1 22.5
0 8.4 0 �5.3206382155E�5 �5.3206382148E�5 �5.3206382171E�5 40.3
0 3.6 0 4.0009374438E�12 4.0009374610E�12 4.0009374522E�12 39.4
0 12.1 0 �1.2826395140E�31 �1.2826397066E�31 �1.2826396515E�31 45.4
0 1.1 0 �1.2711391438E�1 �1.2711391440E�1 �1.2711391445E�1 43.1
0 0 8.7 9.9253681754E�2 9.9253681754E�2 9.9253681752E�2 7.9
0 0 12.8 �9.3617985464E�9 �9.3617985454E�9 �9.3617985449E�9 25.8
0 0 5.2 3.4083931212E�2 3.4083931200E�2 3.4083931233E�2 27.6
0 0 10.5 8.3039888591E�2 8.3039888587E�2 8.3039888579E�2 26.9
0 0 10.5 3.0014944352E�2 3.0014944344E�2 3.0014944370E�2 37.1
0 0 1.1 9.0417470379E�1 9.0417470395E�1 9.0417470357E�1 35.4
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